Package: ML2Pvae 1.0.0.1
ML2Pvae: Variational Autoencoder Models for IRT Parameter Estimation
Based on the work of Curi, Converse, Hajewski, and Oliveira (2019) <doi:10.1109/IJCNN.2019.8852333>. This package provides easy-to-use functions which create a variational autoencoder (VAE) to be used for parameter estimation in Item Response Theory (IRT) - namely the Multidimensional Logistic 2-Parameter (ML2P) model. To use a neural network as such, nontrivial modifications to the architecture must be made, such as restricting the nonzero weights in the decoder according to some binary matrix Q. The functions in this package allow for straight-forward construction, training, and evaluation so that minimal knowledge of 'tensorflow' or 'keras' is required.
Authors:
ML2Pvae_1.0.0.1.tar.gz
ML2Pvae_1.0.0.1.zip(r-4.5)ML2Pvae_1.0.0.1.zip(r-4.4)ML2Pvae_1.0.0.1.zip(r-4.3)
ML2Pvae_1.0.0.1.tgz(r-4.4-any)ML2Pvae_1.0.0.1.tgz(r-4.3-any)
ML2Pvae_1.0.0.1.tar.gz(r-4.5-noble)ML2Pvae_1.0.0.1.tar.gz(r-4.4-noble)
ML2Pvae_1.0.0.1.tgz(r-4.4-emscripten)ML2Pvae_1.0.0.1.tgz(r-4.3-emscripten)
ML2Pvae.pdf |ML2Pvae.html✨
ML2Pvae/json (API)
# Install 'ML2Pvae' in R: |
install.packages('ML2Pvae', repos = c('https://converseg.r-universe.dev', 'https://cloud.r-project.org')) |
- correlation_matrix - Simulated latent abilities correlation matrix
- diff_true - Simulated difficulty parameters
- disc_true - Simulated discrimination parameters
- q_matrix - Simulated Q-matrix
- responses - Response data
- theta_true - Simulated ability parameters
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:692b9d583c. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | NOTE | Oct 27 2024 |
R-4.5-linux | NOTE | Oct 27 2024 |
R-4.4-win | NOTE | Oct 27 2024 |
R-4.4-mac | NOTE | Oct 27 2024 |
R-4.3-win | NOTE | Oct 27 2024 |
R-4.3-mac | NOTE | Oct 27 2024 |
Exports:build_vae_correlatedbuild_vae_independentget_ability_parameter_estimatesget_item_parameter_estimatestrain_model
Dependencies:backportsbase64enccliconfiggenericsglueherejsonlitekeraslatticelifecyclemagrittrMatrixpngprocessxpsR6rappdirsRcppRcppTOMLreticulaterlangrprojrootrstudioapitensorflowtfautographtfprobabilitytfrunstidyselectvctrswhiskerwithryamlzeallot